A Hyper-Heuristic Classifier for One Dimensional Bin Packing Problems: Improving Classification Accuracy by Attribute Evolution

نویسندگان

  • Kevin Sim
  • Emma Hart
  • Ben Paechter
چکیده

A hyper-heuristic for the one dimensional bin packing problem is presented that uses an Evolutionary Algorithm (EA) to evolve a set of attributes that characterise a problem instance. The EA evolves divisions of variable quantity and dimension that represent ranges of a bin’s capacity and are used to train a k-nearest neighbour algorithm. Once trained the classifier selects a single deterministic heuristic to solve each one of a large set of unseen problem instances. The evolved classifier is shown to achieve results significantly better than are obtained by any of the constituent heuristics when used in isolation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A genetic programming hyper-heuristic approach to automated packing

This thesis presents a programme of research which investigated a genetic programming hyper-heuristic methodology to automate the heuristic design process for one, two and three dimensional packing problems. Traditionally, heuristic search methodologies operate on a space of potential solutions to a problem. In contrast, a hyper-heuristic is a heuristic which searches a space of heuristics, rat...

متن کامل

A study of evolutionary algorithm selection hyper-heuristics for the one-dimensional bin-packing problem

Hyper-heuristics are aimed at providing a generalized solution to optimization problems rather than producing the best result for one or more problem instances. This paper examines the use of evolutionary algorithm (EA) selection hyper-heuristics to solve the offline one-dimensional bin-packing problem. Two EA hyper-heuristics are evaluated. The first (EA-HH1) searches a heuristic space of comb...

متن کامل

Ant-Q Hyper Heuristic Approach applied to the Cross- domain Heuristic Search Challenge problems

The first Cross-domain Heuristic Search Challenge (CHeSC 2011) is an international research competition aimed at measuring hyperheuristics performance over several problem domains. Hyper-heuristics are new approaches which aim at raising the level of abstraction when solving combinatorial optimisation problems. During this competition, we have applied the Ant-Q hyper-heuristic approach, propose...

متن کامل

Learning a Procedure That Can Solve Hard Bin-Packing Problems: A New GA-Based Approach to Hyper-heuristics

The idea underlying hyper-heuristics is to discover some combination of familiar, straightforward heuristics that performs very well across a whole range of problems. To be worthwhile, such a combination should outperform all of the constituent heuristics. In this paper we describe a novel messy-GA-based approach that learns such a heuristic combination for solving one-dimensional bin-packing p...

متن کامل

Role of Heuristic Methods with variable Lengths In ANFIS Networks Optimum Design and Training

ANFIS systems have been much considered due to their acceptable performance in terms of creation of fuzzy classifier and training. One main challenge in designing an ANFIS system is to achieve an efficient method with high accuracy and appropriate interpreting capability. Undoubtedly, type and location of membership functions and the way an ANFIS network is trained are of considerable effect on...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012